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5.1

Diagonalization

Definition

A linear operator T on a finite-dimensional vector space V is
diagonalizable if there is an ordered basis β for V such that [T ]β is
a diagonal matrix. A square matrix A is diagonalizable if LA is
diagonalizable.
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5.1

Eigenvalues and Eigenvectors

Definition

Let T be a linear operator on a vector space V . A nonzero vector
v ∈ V is an eigenvector of T if there exists a scalar eigenvalue λ
corresponding to the eigenvector v such that T (v) = λv .

Let A ∈ Mn×n(F ). A nonzero vector v ∈ F n is an eigenvector of A
if v is an eigenvector of LA; that is, if Av = λv for some scalar
eigenvalue λ of A corresponding to the eigenvector v .
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5.1

Eigenvalues and Eigenvectors: Example
Example

Let A =

[
0 −2
−4 2

]
, u =

[
1
1

]
, and v =

[
−1

1

]
. Examine the

images of u and v under multiplication by A.

Solution

Au =

[
0 −2
−4 2

] [
1
1

]
=

[
−2
−2

]
=

−2

[
1
1

]
= −2u

u is called an eigenvector of A since Au is a
multiple of u.

Av =

[
0 −2
−4 2

] [
−1

1

]
=

[
−2
6

]
6= λv

v is not an eigenvector of A since Av is not a
multiple of v.

Au = −2u, but
Av 6= λv
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5.1

Eigenvalues and Eigenvectors: Example

Example

Show that 4 is an eigenvalue of A =

[
0 −2
−4 2

]
and find the

corresponding eigenvectors.

Solution: Scalar 4 is an eigenvalue of A if and only if Ax = 4x has
a nontrivial solution.

Ax−4x = 0

Ax−4 ( ) x = 0

(A−4I ) x = 0.

To solve (A−4I ) x = 0, we need to find A−4I first:

A−4I =

[
0 −2
−4 2

]
−
[

4 0
0 4

]
=

[
−4 −2
−4 −2

]
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5.1

Eigenvalues and Eigenvectors: Example

Now solve (A−4I ) x = 0:[
−4 −2 0
−4 −2 0

]
∼

[
1 1

2 0
0 0 0

]

⇒ x =

[
−1

2x2
x2

]
= x2

[
−1

2
1

]
.

Each vector of the form x2

[
−1

2
1

]
is an

eigenvector corresponding to the eigenvalue
λ = 4.

Eigenspace for λ = 4

The set of all solutions to (A−λI ) x = 0 is called the eigenspace
of A corresponding to λ.
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5.1

Diagonalization

Theorem (5.1)

A linear operator T on a finite-dimensional vector space V is
diagonalizable if and only if there exists an ordered basis β for V
consisting of eigenvectors of T . If T is diagonalizable,
β = {v1, · · · , vn} is an ordered basis of eigenvectors of T , and
D = [T ]β, then D is a diagonal matrix and Djj is the eigenvalue
corresponding to vj for 1 ≤ j ≤ n.
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5.1

Diagonalization

To diagonalize a matrix or a linear operator is to find a basis of
eigenvectors and the corresponding eigenvalues.
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5.1

Characteristic Polynomial

Theorem (5.2)

Let A ∈ Mn×n(F ). Then a scalar λ is an eigenvalue of A if and
only if det(A− λIn) = 0.
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5.1

Characteristic Polynomial

Definition

Let A ∈ Mn×n(F ). The polynomial f (t) = det(A− tIn) is called
the characteristic polynomial of A.
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5.1

Characteristic Polynomial

Definition

Let T be a linear operator on an n-dimensional vector space V
with ordered basis β. We define the characteristic polynomial f (t)
of T to be the characteristic polynomial of A = [T ]β:
f (t) = det(A− tIn).
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5.1

Properties

Theorem (5.3)

Let A ∈ Mn×n(F ).

(a) The characteristic polynomial of A is a polynomial of degree
n with leading coefficient (−1)n.

(b) A has at most n distinct eigenvalues.
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5.1

Properties

Theorem (5.4)

Let T be a linear operator on a vector space V , and let λ be an
eigenvalue of T . A vector v ∈ V is an eigenvector of T
corresponding to λ if and only if v 6= 0 and v ∈ N(T − λI ).
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5.2

5.2 Diagonalizability

Diagonalizability

Multiplicity

Direct Sums
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5.2

Diagonalizability

Theorem (5.5)

Let T be a linear operator on a vector space V , and let λ1, · · · , λk
be distinct eigenvalues of T . If v1, · · · , vk are the corresponding
eigenvectors, then {v1, · · · , vk} is linearly independent.

Corollary

Let T be a linear operator on an n-dimensional vector space V . If
T has n distinct eigenvalues, then T is diagonalizable.
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5.2

Diagonalizability (cont.)

Definition

A polynomial f (t) in P(F ) splits over F if there are scalars c , a1,
· · · , an in F such that f (t) = c(t − a1)(t − a2) · · · (t − an).

Theorem (5.6)

The characteristic polynomial of any diagonalizable operator splits.
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5.2

Multiplicity

Definition

Let λ be an eigenvalue of a linear operator or matrix with
characteristic polynomial f (t). The (algebraic) multiplicity of λ is
the largest positive integer k for which (t − λ)k is a factor of f (t).

Definition

Let T be a linear operator on a vector space V , and let λ be an
eigenvalue of T . Define Eλ = {x ∈ V : T (x) = λx} = N(T − IV ).
The set Eλ is the eigenspace of T corresponding to the eigenvalue
λ. The eigenspace of a square matrix A is the eigenspace of LA.
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5.2

Multiplicity (cont.)

Theorem (5.7)

Let T be a linear operator on a finite-dimensional vector space V ,
and let λ be an eigenvalue of T having multiplicity m. Then
1 ≤ dim(Eλ) ≤ m.
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5.2

Diagonalizability
Lemma

Let T be a linear operator, and let λ1, · · · , λk be distinct
eigenvalues of T . For i = 1, · · · , k , let vi ∈ Eλi

. If

v1 + v2 + · · ·+ vk = 0,

then vi = 0 for all i .

Theorem (5.8)

Let T be a linear operator on a vector space V , and let λ1, · · · , λk
be distinct eigenvalues of T . For i = 1, · · · , k, let Si be a finite
linearly independent subset of the eigenspace Eλi

. Then
S = S1 ∪ S2 ∪ · · · ∪ Sk is a linearly independent subset of V .

Math 4377/6308, Advanced Linear Algebra



5.2

Diagonalizability

Theorem (5.9)

Let T be a linear operator on a finite-dimensional vector space V
such that the characteristic polynomial of T splits. Let λ1, · · · , λk
be the distinct eigenvalues of T . Then

(a) T is diagonalizable if and only if the multiplicity of λi is
equal to dim(Eλi

) for all i .

(b) If T is diagonalizable and βi is an ordered basis for Eλi
, for

each i , then β = β1 ∪ β2 ∪ · · · ∪ βk is an ordered basis for V
consisting of eigenvectors of T .
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5.2

Diagonalizability (cont.)

Test for Diagonalization

Let T be a linear operator on an n-dimensional vector space V .
Then T is diagonalizable if and only if both of the following
conditions hold.

The characteristic polynomial of T splits.

The multiplicity of each eigenvalue λ equals n− rank(T −λI ).
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5.2

Direct Sums

Definition

The sum of the subspaces W1, · · · , Wk of a vector space is the set

k∑
i=1

Wi = {v1 + · · ·+ vk : vi ∈Wi for 1 ≤ i ≤ k}.

Definition

A vector space V is the direct sum of subspaces W1, · · · , Wk ,
denoted V = W1 ⊕ · · · ⊕Wk , if

V =
k∑

i=1

Wi and Wj ∩
∑
i 6=j

Wi = {0} for each j , 1 ≤ j ≤ k.
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5.2

Direct Sums (cont.)

Theorem (5.10)

Let W1, · · · , Wk be subspaces of finite-dimensional vector space
V . The following are equivalent:

(a) V = W1 ⊕ · · · ⊕Wk .

(b) V =
∑k

i=1Wi and for any v1, · · · , vk s.t. vi ∈Wi

(1 ≤ i ≤ k), if v1 + · · ·+ vk = 0, then vi = 0 for all i .

(c) Each v ∈ V can be uniquely written as v = v1 + · · ·+ vk ,
where vi ∈Wi .

(d) If γi is an ordered basis for Wi (1 ≤ i ≤ k), then
γ1 ∪ · · · ∪ γk is an ordered basis for V .

(e) For each i = 1, · · · , k there exists an ordered basis γi for Wi

such that γ1 ∪ · · · ∪ γk is an ordered basis for V .
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5.2

Direct Sums (cont.)

Theorem (5.11)

A linear operator T on finite-dimensional vector space V is
diagonalizable if and only if V is the direct sum of the eigenspaces
of T .
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5.3

5.3 Matrix Limites and Markov Chains

Matrix Limits

Existence of Limits
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5.3

Matrix Limits

Definition

Let L, A1, A2, · · · be n × p matrices with complex entries. The
sequence A1, A2, · · · is said to converge to the limit L if
limm→∞(Am)ij = Lij for all 1 ≤ i ≤ n and 1 ≤ j ≤ p. If L is the
limit of the sequence, we write limm→∞ Am = L.

Theorem (5.12)

Let A1, A2, · · · be a sequence of n × p matrices with complex
entries that converges to L. Then for any P ∈ Mr×n(C ) and
Q ∈ Mp×s(C ),

lim
m→∞

PAm = PL and lim
m→∞

AmQ = LQ.
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5.3

Matrix Limits (cont.)

Corollary

Let A ∈ Mn×n(C ) be such that limm→∞ Am = L. Then for any
invertible Q ∈ Mn×n(C ),

lim
m→∞

(QAQ−1)m = QLQ−1.
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5.3

Existence of Limits

Consider the set consisting of the complex number 1 and the
interior of the unit disk: S = {λ ∈ C : |λ| < 1 or λ = 1}.

Theorem (5.13)

Let A be a square matrix with complex entries. Then limm→∞ Am

exists if and only if both of the following hold:

(a) Every eigenvalue of A is contained in S.

(b) If 1 is an eigenvalue of A, then the dimension of the
eigenspace corresponding to 1 equals the multiplicity of 1 as
an eigenvalue of A.
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5.3

Existence of Limits (cont.)

Theorem (5.14)

Let A ∈ Mn×n(C ). limm→∞ Am exists if

(a) Every eigenvalue of A is contained in S.

(b) A is diagonalizable.
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