5.1 Eigenvalues and Eigenvectors

- Diagonalization
- Eigenvalues and Eigenvectors
- Characteristic Polynomial
- Properties

Math 4377/6308, Advanced Linear Algebra

• • = • • = •

Diagonalization

Definition

A linear operator T on a finite-dimensional vector space V is diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix. A square matrix A is diagonalizable if L_A is diagonalizable.

Eigenvalues and Eigenvectors

Definition

Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is an eigenvector of T if there exists a scalar eigenvalue λ corresponding to the eigenvector v such that $T(v) = \lambda v$.

Let $A \in M_{n \times n}(F)$. A nonzero vector $v \in F^n$ is an eigenvector of A if v is an eigenvector of L_A ; that is, if $Av = \lambda v$ for some scalar eigenvalue λ of A corresponding to the eigenvector v.

< ロト < 同ト < ヨト < ヨト

Eigenvalues and Eigenvectors: Example

Example

Let
$$A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Examine the images of \mathbf{u} and \mathbf{v} under multiplication by A .

5.1

Solution

$$A\mathbf{u} = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2\begin{bmatrix} 1 \\ 1 \end{bmatrix} = -2\mathbf{u}$$

u is called an *eigenvector* of *A* since *A***u** is a multiple of **u**.

$$A\mathbf{v} = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \end{bmatrix} \neq \lambda \mathbf{v}$$

 \mathbf{v} is not an eigenvector of A since $A\mathbf{v}$ is not a multiple of \mathbf{v} .

Eigenvalues and Eigenvectors: Example

Example

Show that 4 is an eigenvalue of
$$A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$$
 and find the corresponding eigenvectors.

51

Solution: Scalar 4 is an eigenvalue of A if and only if $A\mathbf{x} = 4\mathbf{x}$ has a nontrivial solution.

$$A\mathbf{x}-4\mathbf{x} = \mathbf{0}$$
$$A\mathbf{x}-4(\dots)\mathbf{x} = \mathbf{0}$$
$$(A-4I)\mathbf{x} = \mathbf{0}.$$

To solve $(A-4I) \mathbf{x} = \mathbf{0}$, we need to find A-4I first:

$$A-4I = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -4 & -2 \\ -4 & -2 \end{bmatrix}$$

ゆ く き と く きょ

Eigenvalues and Eigenvectors: Example

5.1

Now solve $(A-4I) \mathbf{x} = \mathbf{0}$:

$$\begin{bmatrix} -4 & -2 & 0 \\ -4 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \quad \mathbf{x} = \begin{bmatrix} -\frac{1}{2}x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}.$$
Each vector of the form $x_2 \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$ is an eigenvector corresponding to the eigenvalue $\lambda = 4.$
Eigenspace for $\lambda = 4$

The set of all solutions to $(A - \lambda I) \mathbf{x} = \mathbf{0}$ is called the **eigenspace** of *A* corresponding to λ .

Diagonalization

Theorem (5.1)

A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an ordered basis β for V consisting of eigenvectors of T. If T is diagonalizable, $\beta = \{v_1, \dots, v_n\}$ is an ordered basis of eigenvectors of T, and $D = [T]_{\beta}$, then D is a diagonal matrix and D_{jj} is the eigenvalue corresponding to v_i for $1 \le j \le n$.

5.1

- 4 同 6 4 日 6 4 日 6

Diagonalization

To diagonalize a matrix or a linear operator is to find a basis of eigenvectors and the corresponding eigenvalues.

5.1

→ ∃ →

Characteristic Polynomial

Theorem (5.2)

Let $A \in M_{n \times n}(F)$. Then a scalar λ is an eigenvalue of A if and only if det $(A - \lambda I_n) = 0$.

5.1

・ 同下 ・ ヨト ・ ヨト

Characteristic Polynomial

Definition

Let $A \in M_{n \times n}(F)$. The polynomial $f(t) = \det(A - tI_n)$ is called the characteristic polynomial of A.

5.1

Math 4377/6308, Advanced Linear Algebra

Characteristic Polynomial

Definition

Let T be a linear operator on an *n*-dimensional vector space V with ordered basis β . We define the characteristic polynomial f(t)of T to be the characteristic polynomial of $A = [T]_{\beta}$: $f(t) = \det(A - tI_n)$.

5.1

> < 3 > < 3 >

Properties

Theorem (5.3)

Let $A \in M_{n \times n}(F)$.

(a) The characteristic polynomial of A is a polynomial of degree n with leading coefficient $(-1)^n$.

5.1

(b) A has at most n distinct eigenvalues.

Theorem (5.4)

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T - \lambda I)$.

5.1

- 4 同 6 4 日 6 4 日 6

5.2 Diagonalizability

- Diagonalizability
- Multiplicity
- Direct Sums

Math 4377/6308, Advanced Linear Algebra

過 ト イヨ ト イヨト

Diagonalizability

Theorem (5.5)

Let T be a linear operator on a vector space V, and let $\lambda_1, \dots, \lambda_k$ be distinct eigenvalues of T. If v_1, \dots, v_k are the corresponding eigenvectors, then $\{v_1, \dots, v_k\}$ is linearly independent.

Corollary

Let T be a linear operator on an *n*-dimensional vector space V. If T has *n* distinct eigenvalues, then T is diagonalizable.

Math 4377/6308, Advanced Linear Algebra

Diagonalizability (cont.)

Definition

A polynomial f(t) in P(F) splits over F if there are scalars c, a_1 , \cdots , a_n in F such that $f(t) = c(t - a_1)(t - a_2) \cdots (t - a_n)$.

5.2

Theorem (5.6)

The characteristic polynomial of any diagonalizable operator splits.

Math 4377/6308, Advanced Linear Algebra

(日) (同) (日) (日) (日)

Multiplicity

Definition

Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial f(t). The (algebraic) multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of f(t).

Definition

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Define $E_{\lambda} = \{x \in V : T(x) = \lambda x\} = N(T - I_V)$. The set E_{λ} is the eigenspace of T corresponding to the eigenvalue λ . The eigenspace of a square matrix A is the eigenspace of L_A .

5.2

・ロン ・四 ・ ・ ヨン ・ ヨン

Multiplicity (cont.)

Theorem (5.7)

Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue of T having multiplicity m. Then $1 \leq \dim(E_{\lambda}) \leq m$.

5.2

Diagonalizability

Lemma

Let T be a linear operator, and let $\lambda_1, \dots, \lambda_k$ be distinct eigenvalues of T. For $i = 1, \dots, k$, let $v_i \in E_{\lambda_i}$. If

$$v_1+v_2+\cdots+v_k=0,$$

then $v_i = 0$ for all *i*.

Theorem (5.8)

Let T be a linear operator on a vector space V, and let $\lambda_1, \dots, \lambda_k$ be distinct eigenvalues of T. For $i = 1, \dots, k$, let S_i be a finite linearly independent subset of the eigenspace E_{λ_i} . Then $S = S_1 \cup S_2 \cup \dots \cup S_k$ is a linearly independent subset of V.

Diagonalizability

Theorem (5.9)

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_1, \dots, \lambda_k$ be the distinct eigenvalues of T. Then

- (a) *T* is diagonalizable if and only if the multiplicity of λ_i is equal to dim (E_{λ_i}) for all *i*.
- (b) If T is diagonalizable and β_i is an ordered basis for E_{λ_i} , for each i, then $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$ is an ordered basis for V consisting of eigenvectors of T.

イロト 不得下 イヨト イヨト

Diagonalizability (cont.)

Test for Diagonalization

Let T be a linear operator on an *n*-dimensional vector space V. Then T is diagonalizable if and only if both of the following conditions hold.

5.2

- The characteristic polynomial of T splits.
- The multiplicity of each eigenvalue λ equals $n \operatorname{rank}(T \lambda I)$.

Direct Sums

Definition

The sum of the subspaces W_1, \cdots, W_k of a vector space is the set

5.2

$$\sum_{i=1}^k W_i = \{v_1 + \cdots + v_k : v_i \in W_i \text{ for } 1 \leq i \leq k\}.$$

Definition

A vector space V is the direct sum of subspaces W_1, \dots, W_k , denoted $V = W_1 \oplus \dots \oplus W_k$, if

$$V = \sum_{i=1}^{k} W_i$$
 and $W_j \cap \sum_{i \neq j} W_i = \{0\}$ for each $j, 1 \leq j \leq k$.

Math 4377/6308, Advanced Linear Algebra

Direct Sums (cont.)

Theorem (5.10)

Let W_1, \dots, W_k be subspaces of finite-dimensional vector space V. The following are equivalent:

5.2

(a)
$$V = W_1 \oplus \cdots \oplus W_k$$
.

- (b) $V = \sum_{i=1}^{k} W_i$ and for any v_1, \dots, v_k s.t. $v_i \in W_i$ $(1 \le i \le k)$, if $v_1 + \dots + v_k = 0$, then $v_i = 0$ for all i.
- (c) Each $v \in V$ can be uniquely written as $v = v_1 + \cdots + v_k$, where $v_i \in W_i$.
- (d) If γ_i is an ordered basis for W_i $(1 \le i \le k)$, then $\gamma_1 \cup \cdots \cup \gamma_k$ is an ordered basis for V.
- (e) For each $i = 1, \dots, k$ there exists an ordered basis γ_i for W_i such that $\gamma_1 \cup \dots \cup \gamma_k$ is an ordered basis for V.

Direct Sums (cont.)

Theorem (5.11)

A linear operator T on finite-dimensional vector space V is diagonalizable if and only if V is the direct sum of the eigenspaces of T.

5.2

通 ト イ ヨ ト イ ヨ ト

5.3 Matrix Limites and Markov Chains

Matrix Limits

• Existence of Limits

Math 4377/6308, Advanced Linear Algebra

• • = • • = •

э

Matrix Limits

Definition

Let L, A_1, A_2, \cdots be $n \times p$ matrices with complex entries. The sequence A_1, A_2, \cdots is said to *converge to the limit L* if $\lim_{m\to\infty} (A_m)_{ij} = L_{ij}$ for all $1 \le i \le n$ and $1 \le j \le p$. If L is the limit of the sequence, we write $\lim_{m\to\infty} A_m = L$.

Theorem (5.12)

Let A_1, A_2, \cdots be a sequence of $n \times p$ matrices with complex entries that converges to L. Then for any $P \in M_{r \times n}(C)$ and $Q \in M_{p \times s}(C)$,

$$\lim_{m\to\infty} PA_m = PL \text{ and } \lim_{m\to\infty} A_m Q = LQ.$$

- 4 同 6 4 日 6 4 日 6

Matrix Limits (cont.)

Corollary

Let $A \in M_{n \times n}(C)$ be such that $\lim_{m \to \infty} A^m = L$. Then for any invertible $Q \in M_{n \times n}(C)$,

$$\lim_{m\to\infty}(QAQ^{-1})^m=QLQ^{-1}.$$

過 ト イヨ ト イヨト

Existence of Limits

Consider the set consisting of the complex number 1 and the interior of the unit disk: $S = \{\lambda \in \mathbb{C} : |\lambda| < 1 \text{ or } \lambda = 1\}.$

Theorem (5.13)

Let A be a square matrix with complex entries. Then $\lim_{m\to\infty} A^m$ exists if and only if both of the following hold:

- (a) Every eigenvalue of A is contained in S.
- (b) If 1 is an eigenvalue of A, then the dimension of the eigenspace corresponding to 1 equals the multiplicity of 1 as an eigenvalue of A.

・ 同 ト ・ ヨ ト ・ ヨ ト

Existence of Limits (cont.)

Theorem (5.14)

Let $A \in M_{n \times n}(C)$. $\lim_{m \to \infty} A^m$ exists if

(a) Every eigenvalue of A is contained in S.

5.3

(b) A is diagonalizable.

通 ト イ ヨ ト イ ヨ ト