5.1 Eigenvalues and Eigenvectors

- Diagonalization
- Eigenvalues and Eigenvectors
- Characteristic Polynomial
- Properties

Diagonalization

Definition

A linear operator T on a finite-dimensional vector space V is diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix. A square matrix A is diagonalizable if L_{A} is diagonalizable.

Eigenvalues and Eigenvectors

Definition

Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is an eigenvector of T if there exists a scalar eigenvalue λ corresponding to the eigenvector v such that $T(v)=\lambda v$.

Let $A \in M_{n \times n}(F)$. A nonzero vector $v \in F^{n}$ is an eigenvector of A if v is an eigenvector of L_{A}; that is, if $A v=\lambda v$ for some scalar eigenvalue λ of A corresponding to the eigenvector v.

Eigenvalues and Eigenvectors: Example

Example

Let $A=\left[\begin{array}{rr}0 & -2 \\ -4 & 2\end{array}\right], \mathbf{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$. Examine the images of \mathbf{u} and \mathbf{v} under multiplication by A.

Solution

$$
\begin{gathered}
A \mathbf{u}=\left[\begin{array}{rr}
0 & -2 \\
-4 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2
\end{array}\right]= \\
-2\left[\begin{array}{l}
1 \\
1
\end{array}\right]=-2 \mathbf{u}
\end{gathered}
$$

\mathbf{u} is called an eigenvector of A since $A \mathbf{u}$ is a multiple of \mathbf{u}.

$$
A \mathbf{v}=\left[\begin{array}{rr}
0 & -2 \\
-4 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
6
\end{array}\right] \neq \lambda \mathbf{v}
$$

\mathbf{v} is not an eigenvector of A since $A \mathbf{v}$ is not a multiple of \mathbf{v}.
$A \mathbf{u}=-2 \mathbf{u}$, but $A \mathbf{v} \neq \lambda \mathbf{v}$

Eigenvalues and Eigenvectors: Example

Example

Show that 4 is an eigenvalue of $A=\left[\begin{array}{rr}0 & -2 \\ -4 & 2\end{array}\right]$ and find the corresponding eigenvectors.

Solution: Scalar 4 is an eigenvalue of A if and only if $A \mathbf{x}=4 \mathbf{x}$ has a nontrivial solution.

$$
\begin{gathered}
A \mathbf{x}-4 \mathbf{x}=\mathbf{0} \\
A \mathbf{x}-4(--) \mathbf{x}=\mathbf{0} \\
(A-4 I) \mathbf{x}=\mathbf{0}
\end{gathered}
$$

To solve $(A-4 I) \mathbf{x}=\mathbf{0}$, we need to find $A-4 /$ first:

$$
A-4 I=\left[\begin{array}{rr}
0 & -2 \\
-4 & 2
\end{array}\right]-\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]=\left[\begin{array}{ll}
-4 & -2 \\
-4 & -2
\end{array}\right]
$$

Eigenvalues and Eigenvectors: Example

Now solve $(A-4 I) \mathbf{x}=\mathbf{0}$:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-4 & -2 & 0 \\
-4 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& \Rightarrow \quad \mathbf{x}=\left[\begin{array}{c}
-\frac{1}{2} x_{2} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] .
\end{aligned}
$$

Each vector of the form $x_{2}\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$ is an eigenvector corresponding to the eigenvalue

Eigenspace for $\lambda=4$ $\lambda=4$.

The set of all solutions to $(A-\lambda /) \mathbf{x}=\mathbf{0}$ is called the eigenspace of A corresponding to λ.

Diagonalization

Theorem (5.1)

A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an ordered basis β for V consisting of eigenvectors of T. If T is diagonalizable, $\beta=\left\{v_{1}, \cdots, v_{n}\right\}$ is an ordered basis of eigenvectors of T, and $D=[T]_{\beta}$, then D is a diagonal matrix and $D_{j j}$ is the eigenvalue corresponding to v_{j} for $1 \leq j \leq n$.

Diagonalization

To diagonalize a matrix or a linear operator is to find a basis of eigenvectors and the corresponding eigenvalues.

Characteristic Polynomial

Theorem (5.2)

Let $A \in M_{n \times n}(F)$. Then a scalar λ is an eigenvalue of A if and only if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.

Characteristic Polynomial

Definition

Let $A \in M_{n \times n}(F)$. The polynomial $f(t)=\operatorname{det}\left(A-t l_{n}\right)$ is called the characteristic polynomial of A.

Characteristic Polynomial

Definition

Let T be a linear operator on an n-dimensional vector space V with ordered basis β. We define the characteristic polynomial $f(t)$ of T to be the characteristic polynomial of $A=[T]_{\beta}$: $f(t)=\operatorname{det}\left(A-t I_{n}\right)$.

Properties

Theorem (5.3)

Let $A \in M_{n \times n}(F)$.
(a) The characteristic polynomial of A is a polynomial of degree n with leading coefficient $(-1)^{n}$.
(b) A has at most n distinct eigenvalues.

Properties

Theorem (5.4)

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T-\lambda I)$.

5.2 Diagonalizability

- Diagonalizability
- Multiplicity
- Direct Sums

Diagonalizability

Theorem (5.5)

Let T be a linear operator on a vector space V, and let $\lambda_{1}, \cdots, \lambda_{k}$ be distinct eigenvalues of T. If v_{1}, \cdots, v_{k} are the corresponding eigenvectors, then $\left\{v_{1}, \cdots, v_{k}\right\}$ is linearly independent.

Corollary

Let T be a linear operator on an n-dimensional vector space V. If T has n distinct eigenvalues, then T is diagonalizable.

Diagonalizability (cont.)

Definition

A polynomial $f(t)$ in $P(F)$ splits over F if there are scalars c, a_{1}, \cdots, a_{n} in F such that $f(t)=c\left(t-a_{1}\right)\left(t-a_{2}\right) \cdots\left(t-a_{n}\right)$.

Theorem (5.6)

The characteristic polynomial of any diagonalizable operator splits.

Multiplicity

Definition

Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial $f(t)$. The (algebraic) multiplicity of λ is the largest positive integer k for which $(t-\lambda)^{k}$ is a factor of $f(t)$.

Definition

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Define $E_{\lambda}=\{x \in V: T(x)=\lambda x\}=N\left(T-I_{V}\right)$. The set E_{λ} is the eigenspace of T corresponding to the eigenvalue λ. The eigenspace of a square matrix A is the eigenspace of L_{A}.

Multiplicity (cont.)

Theorem (5.7)

Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue of T having multiplicity m. Then $1 \leq \operatorname{dim}\left(E_{\lambda}\right) \leq m$.

Diagonalizability

Lemma

Let T be a linear operator, and let $\lambda_{1}, \cdots, \lambda_{k}$ be distinct eigenvalues of T. For $i=1, \cdots, k$, let $v_{i} \in E_{\lambda_{i}}$. If

$$
v_{1}+v_{2}+\cdots+v_{k}=0,
$$

then $v_{i}=0$ for all i.

Theorem (5.8)

Let T be a linear operator on a vector space V, and let $\lambda_{1}, \cdots, \lambda_{k}$ be distinct eigenvalues of T. For $i=1, \cdots, k$, let S_{i} be a finite linearly independent subset of the eigenspace $E_{\lambda_{i}}$. Then $S=S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ is a linearly independent subset of V.

Diagonalizability

Theorem (5.9)

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_{1}, \cdots, \lambda_{k}$ be the distinct eigenvalues of T. Then
(a) T is diagonalizable if and only if the multiplicity of λ_{i} is equal to $\operatorname{dim}\left(E_{\lambda_{i}}\right)$ for all i.
(b) If T is diagonalizable and β_{i} is an ordered basis for $E_{\lambda_{i}}$, for each i, then $\beta=\beta_{1} \cup \beta_{2} \cup \cdots \cup \beta_{k}$ is an ordered basis for V consisting of eigenvectors of T.

Diagonalizability (cont.)

Test for Diagonalization

Let T be a linear operator on an n-dimensional vector space V. Then T is diagonalizable if and only if both of the following conditions hold.

- The characteristic polynomial of T splits.
- The multiplicity of each eigenvalue λ equals $n-\operatorname{rank}(T-\lambda /)$.

Direct Sums

Definition

The sum of the subspaces W_{1}, \cdots, W_{k} of a vector space is the set

$$
\sum_{i=1}^{k} W_{i}=\left\{v_{1}+\cdots+v_{k}: v_{i} \in W_{i} \text { for } 1 \leq i \leq k\right\}
$$

Definition

A vector space V is the direct sum of subspaces W_{1}, \cdots, W_{k}, denoted $V=W_{1} \oplus \cdots \oplus W_{k}$, if

$$
V=\sum_{i=1}^{k} W_{i} \text { and } W_{j} \cap \sum_{i \neq j} W_{i}=\{0\} \text { for each } j, 1 \leq j \leq k
$$

Direct Sums (cont.)

Theorem (5.10)

Let W_{1}, \cdots, W_{k} be subspaces of finite-dimensional vector space V. The following are equivalent:
(a) $\quad V=W_{1} \oplus \cdots \oplus W_{k}$.
(b) $\quad V=\sum_{i=1}^{k} W_{i}$ and for any v_{1}, \cdots, v_{k} s.t. $v_{i} \in W_{i}$ $(1 \leq i \leq k)$, if $v_{1}+\cdots+v_{k}=0$, then $v_{i}=0$ for all i.
(c) Each $v \in V$ can be uniquely written as $v=v_{1}+\cdots+v_{k}$, where $v_{i} \in W_{i}$.
(d) If γ_{i} is an ordered basis for $W_{i}(1 \leq i \leq k)$, then $\gamma_{1} \cup \cdots \cup \gamma_{k}$ is an ordered basis for V.
(e) For each $i=1, \cdots, k$ there exists an ordered basis γ_{i} for W_{i} such that $\gamma_{1} \cup \cdots \cup \gamma_{k}$ is an ordered basis for V.

Direct Sums (cont.)

Theorem (5.11)

A linear operator T on finite-dimensional vector space V is diagonalizable if and only if V is the direct sum of the eigenspaces of T.

5.3 Matrix Limites and Markov Chains

- Matrix Limits
- Existence of Limits

Matrix Limits

Definition

Let L, A_{1}, A_{2}, \cdots be $n \times p$ matrices with complex entries. The sequence A_{1}, A_{2}, \cdots is said to converge to the limit L if $\lim _{m \rightarrow \infty}\left(A_{m}\right)_{i j}=L_{i j}$ for all $1 \leq i \leq n$ and $1 \leq j \leq p$. If L is the limit of the sequence, we write $\lim _{m \rightarrow \infty} A_{m}=L$.

Theorem (5.12)

Let A_{1}, A_{2}, \cdots be a sequence of $n \times p$ matrices with complex entries that converges to L. Then for any $P \in M_{r \times n}(C)$ and $Q \in M_{p \times s}(C)$,

$$
\lim _{m \rightarrow \infty} P A_{m}=P L \text { and } \lim _{m \rightarrow \infty} A_{m} Q=L Q
$$

Matrix Limits (cont.)

Corollary
Let $A \in M_{n \times n}(C)$ be such that $\lim _{m \rightarrow \infty} A^{m}=L$. Then for any invertible $Q \in M_{n \times n}(C)$,

$$
\lim _{m \rightarrow \infty}\left(Q A Q^{-1}\right)^{m}=Q L Q^{-1}
$$

Existence of Limits

Consider the set consisting of the complex number 1 and the interior of the unit disk: $S=\{\lambda \in \mathbb{C}:|\lambda|<1$ or $\lambda=1\}$.

Theorem (5.13)

Let A be a square matrix with complex entries. Then $\lim _{m \rightarrow \infty} A^{m}$ exists if and only if both of the following hold:
(a) Every eigenvalue of A is contained in S.
(b) If 1 is an eigenvalue of A, then the dimension of the eigenspace corresponding to 1 equals the multiplicity of 1 as an eigenvalue of A.

Existence of Limits (cont.)

Theorem (5.14)

Let $A \in M_{n \times n}(C) . \lim _{m \rightarrow \infty} A^{m}$ exists if
(a) Every eigenvalue of A is contained in S.
(b) A is diagonalizable.

